

Ice Sheet System model
Application to the ISMIP Intercomparison

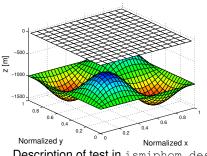
Basile DE FLEURIAN¹,
BASED ON ISSM TEAM WORK,

¹University of California, Irvine

How To

The runme file and *.par files are giving a layout of the simulation that have to be written down.

- Each code line that have to be typed in is preceded by %->
- Keywords introduced by # should be typed in Matlab to get informations


The corresponding ${\tt Cheaty}$ files have been completed, you can refer to them if stuck.

Test A

Square ice sheet flowing over a bumpy bed

- Sinusoidal bedrock
- · Ice frozen on the bed
- · Periodic boundary conditions

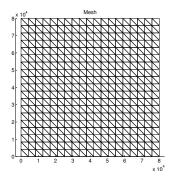
Description of test in ismiphom_description.pdf

MISMIP intercomparison

Simulation Layout

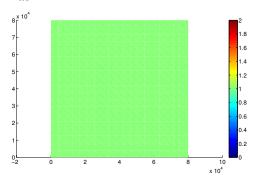
The simulation file runme.m is organized into different steps each with the same structure

- model loading
- performing an action
- model saving


The step specifier step is defined at the top of the runme file. Each step is enclosed in an if loop in which the perform keyword act as a counter and updates the simulation name.

Mesh

In place of loading a preceding model we initialize one
The action here is the generation of a mesh


Mesh size: 80000 m Nodes in each direction: 20

Set Mask

Load the Mesh_generation model
The action here is the set-up of the grounded
mask

Mesh size: 80000 m

Nodes in each direction: 20

All grounded: default

Parameterization

Load the SetMask model
The action here is to parameterize the model
Parameterization takes place in the

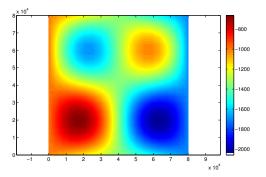
IsmipA.par file and regroups

- The geometry
- · The basal conditions
- The material parameters
- The default BC

Mesh size: 80000 m

Nodes in each direction: 20

All grounded : default



Geometry

• surface: $s(x, y) = -x \tan(0.5)$

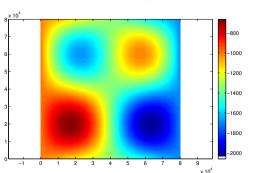
• base: $b(x, y) = s(x, y) - 1000 + 500 \sin\left(\frac{2\pi x}{L}\right) \sin\left(\frac{2\pi y}{L}\right)$

• thickness: h(x, y) = s(x, y) - b(x, y)

Mesh size: 80000 m

Nodes in each direction: 20

All grounded: default



Basal condition

The value are not important as we are dealing with a no-sliding flux.

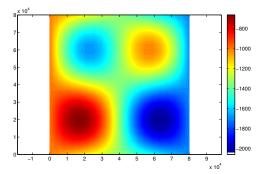
These will be overridden by the basal boundary conditions.

Take care of the size of the parameters

Mesh size: 80000 m

Nodes in each direction: 20

All grounded : default



Rheology and default BC

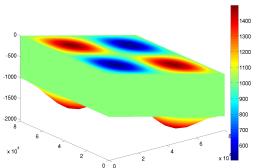
Take care of the size of the parameters

More specific Boundary Condition will be appended in the runme file.

Mesh size: 80000 m Nodes in each direction: 20 All grounded: default Ice-flow parameter: $B = 6.8067 \times 10^7 \text{ Pa s}^{1/n}$

9/1

Glen's exponent: n = 3



Extrusion

Load the Parameterizization model The action here is to extrude the preceding mesh

Save the model

Mesh size : 80000 m Nodes in each direction : 20 All grounded : default Ice-flow parameter: $B=6.8067\times 10^7$ Pa s^{1/n} Glen's exponent: n=35 layers extrusion

Flow equation

Load the Extrusion model
The action here is to define the ice flow model approximation
Save the model

Mesh size: 80000 m Nodes in each direction: 20

All grounded : default lce-flow parameter:

 $B = 6.8067 \times 10^7 \text{ Pa s}^{1/n}$

Glen's exponent: n = 3 5 layers extrusion

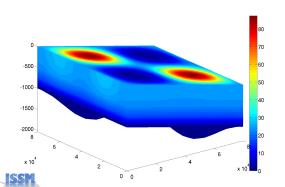
flow model: HO

Boundary conditions

Load the SetFlow model
The action here is to refine the boundary
conditions
No sliding at the base
Periodic boundaries on the sides
The find command give subsets of matrices
based on boolean operations
Save the model

Mesh size: 80000 m Nodes in each direction: 20 All grounded: default Ice-flow parameter: $B = 6.8067 \times 10^7 \text{ Pa s}^{1/n}$ Glen's exponent: n = 35 layers extrusion

flow model: HO

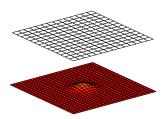


Solve model

Load the BoundaryCondition model
The action here is

- · to set the cluster
- · to set the am mount of output
- · to solve the model

Save the model


Mesh size : 80000 m Nodes in each direction : 20 All grounded : default Ice-flow parameter: $B=6.8067\times 10^7$ Pa s^{1/n} Glen's exponent: n=35 layers extrusion

flow model: HO

Test F

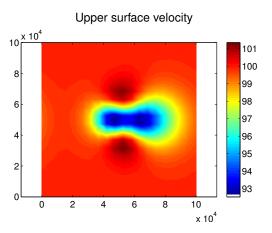
Square ice sheet flowing over a bump

- · Gaussian bumped bedrock
- Ice frozen or sliding on the bed
- Periodic boundary conditions
- · Transient model until steady-state

MISMIP intercomparison

Actual Work

- In the runme file update the ParamFile value
- Fill up the new parameter file IsmipF.par with the geometry the new friction parameters the rheology ...
- Complete step8 to take into account the fact that the simulation is transient



15/1

MISMIP intercomparison

Results

